

Page 1 of 3

Developing with Adobe Photoshop

Cross-application plug-in development

For many developers, expanding their plug-in to work in other applications across
different markets seems cumbersome. Accounting for different code resources
and different requirements for multiple applications is a real burden for what
often is a small, already taxed research and development department.

It doesn’t have to be that way. Currently, a Filter plug-in module written to the
Adobe Photoshop 3.0.5 Application Plug-in Interface (API) specification works with
five different Adobe applications, expanding your opportunities beyond Adobe
Photoshop software’s primary “imaging and design” market.

Cross-application plug-in development is a win-win situation. We estimate that
with 10-20% more development time for tasks such as adding specific resources
and providing alternate code for older host-versions, a plug-in written for the
Adobe Photoshop application can be optimized for After Effects, Adobe
Illustrator, PageMaker, Adobe PhotoDeluxe and Adobe Premiere. That’s an
excellent return on your R&D investment; and it’s a great win for the customers,
who can use your plug-ins in all their graphics applications.

This column begins with our recommended cross-application plug-in development
approach, and charts the current status of which API structures are supported by
Adobe graphics applications. Future columns will provide more detailed
instructions for adapting a plug-in to a specific application. If you just can’t wait
that long, all this information is available in the Adobe Photoshop Software
Development Kit (SDK), and the individual SDKs for other Adobe products.

The different SDKs are available from Adobe’s web site:

www.adobe.com

 under
“Developer Relations”.

We recommend you follow this process for your cross-application plug-in
development:

Table 1: Process for cross-application plug-in development

Step Process Example

1 Assess and determine the problem
your plug-in will solve.

We need a Filter plug-in that makes every Nth
pixel a specified color.

2 Acquire the primary SDK for your
base development.

Download the Photoshop SDK from
www.adobe.com.

Page 2 of 3

3 Examine the examples and read the
API specification in the primary
SDK.

Read the initial chapters and the chapter on Filters
in the Photoshop SDK. Browse through

PIFilters.h

,

PIGeneral.h

 header files; read through
example code for

Dissolve

 Filter.

4 Determine your development
strategy for your base application.

We’ll produce a plug-in for both PPC and 680x0
machines, and we need it to work with version
2.5.

5 Read the information in the

Plug-in
Resources Guide.pdf

, the Cross-
Application Plug-in Development
Resources Guiide, with the needs of
your plug-in in mind.

Originally, we were only going to parse the
filterRect and apply our coloring function. We’re
interested in dynamic resources, and are
considering other features.

6 Reassess your development strategy
for your base application.

Our programming goals have changed to include
extensibility for changing saturation levels over a
period, such as in a QuickTime movie. We will
need to modify our initial approach to Photoshop
to include variables for saturation, instead of
static values.

7 Determine any host requirements
for the other target applications.

Because we want to be compatible with version
2.5, we will need to include alternate code that
does our job without using the newer callback
suites. We also need to make our saturation
variable accessible to the dynamic resources that
are used by the After Effects and Adobe Premiere
applications.

8 Create and program your plug-in. “NthPixelChange” by MySoftware, Inc.

9 Test under your base application. Test “NthPixelChange” in the Adobe Photoshop
3.0.5 software.

10 Program and optimize based on
your testing results.

We found that we can use the Image Services suite
more extensively to help us calculate our changed
pixels resulting in increased efficiency.

11 Test under the other target
applications.

We added the ‘ANIM’ and ‘FltD’ resources and
tested in the After Effects and Adobe Premiere
software.

12 Modify and optimize based on
those results.

Premiere doesn’t support the Image Services suite,
so we created a check and a branch to implement
our original code, if ImageServices is unavailable.

13 Implement your beta-testing
program.

A handful of associated development partners
were given our plug-in to test.

14 Reassess and modify as needed. Our beta testers reported bugs and we fixed the
errors.

Table 1: Process for cross-application plug-in development (Continued)

Step Process Example

Page 3 of 3

Table 2 is a list of Adobe applications that support the API outlined in the Adobe
Photoshop v3.0.5 SDK. Refer to the

Plug-in Resources Guide.pdf

 or the individual
product SDKs for specific implementation issues and emulation caveats.

In future columns, we’ll discuss specific implementation issues with the different
major Adobe applications and offer detailed guidelines for making a plug-in
forward- and backward-compatible.

###

15 Package and release your product. Initial product roll-out.

Table 2: Adobe Photoshop API host emulators

Software Photoshop API version
supported Photoshop modules supported

After Effects 3.0 Filter, Format

Adobe Illustrator 3.0.4 subset; Mac only. Filter, Format

PageMaker 3.0.4 Filter

Adobe PhotoDeluxe 3.0.4 LE Acquire, Export, Filter, Format

Adobe Premiere 2.5 Filter

Table 1: Process for cross-application plug-in development (Continued)

Step Process Example

	Developing with Adobe Photoshop
	Cross-application plug-in development
	Table 1: Process for cross-application plug-in dev...
	Table 2: Adobe Photoshop API host emulators

